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Abstract 
A sequence of steps for determining a crystal struc- 
ture, possibly without ambiguities, is presented. The 
prerequisites are: centrosymmetry (at present) and two 
different anomalous scatterers, a~, a~. Their partial struc- 
ture amplitudes [F,t(hkl) I and IF,2(hkl)l are separated 
by multiple-wavelength measurements (MAD). The core 
part of the method is a recursive algebraic technique 
applied to the geometrical part of these structure ampli- 
tudes from central reciprocal-lattice rows. At least m + 1 
reflections are necessary at each row if 2m atoms of e.g. 
a~ are in a unit cell with space group P1. For each partial 
structure of a~ and a 2 atoms, respectively, the algebra 
finds all homometric and pseudohomometric solutions 
and presents the corresponding signs for each F,(hkl) 
used. Regions of confidence for atomic coordinates are 
given. Five reciprocal-lattice rows (or more) suffice for 
a 'tomographic' location of all atoms a~ and a 2 in 
three dimensions. The two independently determined 
partial structures for a t and a 2 a r e  then aligned to the 
same origin and moduli plus signs of the remaining 
partial structure factors of the non-resonant atoms are 
determined. Various aspects of the method are discussed 
by application to the Cu3SbSe 3 structure, an example 
exhibiting partial pseudosymmetry. 

h , i , j , k , l  
m 

a ,  a I, a 2 

f(A, sin 0/A) 

B 
F 
F.  

1. List of symbols and definitions 
Running indices 
No. of (symmetrically) independent 
atoms in the unit cell, also of a 
partial structure 
Atoms that may act as anomalous 
scatterers 
A of absorption edge for a atoms 
Atomic scattering factor 
= f ° ( s i n O / A )  + f ' (A)  + if"(A) 
Displacement factor coefficient 
Structure factor 
Partial structure factor of a atoms. 
Its modulus Ib-',[ is obtained by 
measuring [F] 2 at  various wave- 
lengths close to an absorption edge 
A, of a (plus perhaps at a rather 
short wavelength and plus at least 

f a l ,  f a2 

F o a l '  F~(~2 

Ir, I 

s r 

Fin = F2n = F,m 

El1 

ga 
Ph 

R(c) 
a i  

one Bijvoet mate for non-centro- 
symmetric structures) according to 
Karle (1980) 
Partial structure factors for atoms 
a I, a~ based on f . i ,  f .-  
As alcove, based on f ~ ,  f.(~ 
Structure amplitude used for obtain- 
ing IF, I I in separation procedure 
(Karle. 1980) no. 1 in a structure 
with anomalous scatterers a~, a 2 
accordin~g to F l = F, 1 + FI, , with 
F i ,  = F,~ 2 + Fl,, 
Sign of structure factor or partial 
structure factor or of its geometrical 
part 
Relative sign of two partial structure 
factors according to F = F + F,, = 
SalFa[  + SrSalFn[ with IFI = IC, I + 

s, IF, I 
Structure factor of atoms always 
non-resonating, i.e. of atoms neither 
al nor a 2 
Structure factor of normal scatterers 
for a structure with only one kind 
of a atom (at the wavelength used 
for measurement) 
Geometrical part (modulus only) of 
the structure factor for a mono- 
atomic partial structure of the asym- 
metric unit having m atoms. 
In space group P l: 

gh = g(hkl) = ~ cos(27rh, r j) 
j = l  

(h = ha* + kb* + lc*, 
r = xa + y b  + ze) 
For a central reciprocal-lattice row, 
e.g. hO0 reflections: 

gh = g(hO0) = ~ cos(27rhxj) 
j = l  

g for a atoms 
Power sum of the cos(27rxj) with 
power h 
Polynomial in c = cos(27rx) 
Coefficients of R(c) 
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S = A h - SlFh,ob~ [ --IFh,cal[ (or lEvi 2 if 
preferred), w h -- weight of observed 
I F hi and h here representing h, k, l 
Scaling factor for experimental F 
or F,, 
(Standard) error 

2. Introduction 

Two essentially different cases exist for non-unique 
crystal-structure determinations: homometry and 
pseudohomometry (provided we do not deal with the 
question of polarity or enantiomers, which can both be 
solved by standard methods, e.g. using f "  of anomalous 
scatterers). True homometric cases are rather rare and 
exist due to special symmetry conditions of the space 
group. Hence, they can be theoretically investigated and 
thus be predicted in principle - however not always- 
easily: Two (or more) different arrangements of the 
same atoms have the same interatomic vector set. 
Therefore, the different structures produce identical 
scattering intensities and cannot be discriminated 
without knowing phases of some relevant F(hkl) .  In 
principle, the simple case of homometric pairs can be 
solved by just one phase (in analogy to the sign of a 
single Bijvoet difference being decisive for enantiomer 
discrimination). Homometry is a 'classical' problem 
and was first treated by Patterson (1939). 

With the term 'pseudohomometry' we want to de- 
scribe a situation that occasionally exists (unfortunately, 
however, more often than hoped for or expected by crys- 
tallographers): i.e. a structure solution may converge, 
e.g. by a least-squares fit, into a 'false' minimum that 
is neither the only one nor represents the lowest S = 
~-]h WhZl2h in the hyperplane on the multidimensional 
parameter space. TWo situations may occur: If S (or any 
type of corresponding R factor) is higher than expected 
from the average of experimental or(IF h 1), the researcher 
may become suspicious and look for a 'better' solution, 
which then may converge into the 'true' minimum 
of Z.  If, however, Z is not substantially larger than 
expected - and correct assessment of experimental errors 
of intensities is sometimes hard to obtain - the minimum 
may not be recognized as a false one. In this situation 
(without smaller cr's and/or higher reflection orders 
available), the experimentalist usually contents himself 
with his structure model until somebody else using 
another data set finds a better (and hopefully true) 
minimum. 

3. Initial considerations 

For the following, we shall restrict ourselves to the 
pure geometry of a crystal-structure model and will 
not consider atomic displacements. Two general ways 
for evaluating all possible geometrical solutions appear 
obvious: In direct space, one could vary the fractional 

coordinates x, y and z of all independent atoms j = 
1 . . . . .  m in appropriate steps from 0 to 1 (one coordinate 
between 0 and 1/2 for space group P1) and calculate 27 
for each combination, thus mapping 27 as a function 
of all possible atomic vectors rj in the half unit cell. 
The other way would be varying in reciprocal space 
all reflection phases (for a 1 structure: trying all sign 
variations in the asymmetric part of reciprocal space) 
for computing electron-density maps (or E maps for 
restricted data sets). It is evident that both ways are not 
feasible with present day computers, and if they were 
(e.g. for an hkl  set limited to perhaps a few hundred 
data), they would be ways of 'brute force'. Let us 
therefore begin first with tailoring the problem into a 
manageable size, i.e. we shall restrict the discussion 
to: 

(i) centrosymmetric structures: J F  I signs instead of 
phases, and only space group P1 in order to avoid 
complications due to other symmetry elements: this does 
not affect the principle and any other centric space group 
can be handled individually; 

(ii) partial structures of one atomic species only: 
their partial IFI can be reduced to represent (relatively) 
few identical point scatterers without the necessity to 
approximate an averaged atomic scattering power; 

(iii) treating only one dimension in a single step: then, 
m independent atoms cell - l  require only m unknown 
(scalar) coordinates to be determined (instead of vectors 
with three components). 

Secondly, we will address some prerequisites and 
desires: 

(i) Partial structure factors of an atomic species a 
can be obtained for anomalous scatterers: from three 
or more measurements at different A's (e.g. at A > A,~ 
and one close to an absorption edge A,,), the procedure 
of Karle (1980) permits each IF[ to be separated into 
IF~I, IFnl, and the relative sign s r between F ,  F ( F  
representing the non-resonant atoms, F = F + F,, or 
IFI = IFal + srlFnl, respectively). The MAD technique 
(Hendrickson, 1985) works also on non-centrosymmetric 
structures. For powder measurements, Prandl (1990, 
1994) developed techniques for separating and evalu- 
ating IF, I. For details on single crystals, see also Pilz 
(1995). 

(ii) A tool is needed for deriving e.g. the x coordinates 
of species a from the IQ(h00)l and finding all possible 
solutions, be they homometric or pseudohomometric. 
To this purpose, we shall briefly describe a 'recursive 
algebraic technique'. 

(iii) If possible, a measure of confidence or 'figure of 
merit' should be assigned to each possible solution. 

(iv) Individual standard deviations are wanted for all 
atomic coordinates. 

(v) In a later stage, treated in the 'point-tomography' 
section, the x coordinates have to be combined with y 
and z parameters determined independently from 0k0 and 
001 data. 
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(vi) The three-dimensional partial structures must be 
referred to the same cell origin. 

4. Recursive algebraic technique 

An algorithm was developed for solving one- 
dimensional centrosymmetric crystal structures or 
projections for (at present) a single atomic species 
a (Knof, 1989; Pilz et al., 1994; Fischer & Pilz, 
1995; Pilz & Fischer, 1996). It is based on a series 
of 'harmonic' partial structure amplitudes [F~(h00)l 
obtained from the separating process mentioned above. 
h is assumed to vary in unit steps from 1 to m +  1 
if m independent a atoms are to be located. [For 
simplicity of this brief description, no special positions 
are considered - a more detailed and thorough paper 
by Pilz & Fischer, presenting also proofs of the short 
mathematics below has been submitted (Pilz & Fischer, 
1997).] The [/7[ are expected to be approximately on 
an absolute scale, and the (overall) Debye temperature 
factor T h = exp( -B]h l : /4  ) is assumed to be known. 

The geometrical term G,hga,h of F~(hO0) represents 
the 'point' structure of the m independent a atoms. For 
the h00 reflections, its modulus 

Ig.,~l = j~ cos(2~'hxj) 

is obtained from the IFJhO0)l or from the IF°(hO0)l, 
respectively, by 

g,,,h = IF°(hOO)l/2 f,°( sin Oh/ A)Th" 

It can then be shown that a polynomial R ( c ) =  
R[cos(27rx)] exists with m roots representing all 
cos(27rxj). Owing to centrosymmetry, the xj are obtained 
unambiguously. [It follows that R(c) can be simply 
transformed into a corresponding R(x) providing directly 
all coordinates of the a atoms, see Fig. 1.] R(c) is 
computed from m + 1 shg h values in a double recursive 
procedure: First, they are converted into 

[ i ,21 ( ) 
Ph = Shgh _ ~--~(_l)t2h_l_2t h h -  l 

t= 1 h---~- l I Ph- 21 

x 2 l-h 

with [h/2] denoting the integer part of h/2. Qi according 
to 

i - - I  

are coefficients of R(c): 

R[cos(27rx)] := ~ ( -  1)iQi cosm-i(271"X). 
i=0  

The signs s h of all gh, necessary for calculating Ph with 
h > 1, are obtained by checking all 2 m variations of 
s h, h -- 2 . . . . .  m + 1 by means of a determinant D 1 
that vanishes for the correct sign variation in the case 
of theoretically exact gh: 

Dlc = 0. 

D I is defined by 

Di 

e l  
P2 

I'm 
Pm+f 

1 0 . . .  0 0 
P~ 2 . . .  0 0 

: : " . .  : : 

Pm-I  Prn-2 " "  P1 m 
I'm Pm-r "'" P2 P~ 

For g's with increasing experimental errors, D jc remains 
'small', but the relative contrast against all other possible 
D~'s lessens. If two (or perhaps more) "small Dlc's" 
appear with equal or almost equal values (or zeros, 
respectively), the two (or perhaps more) corresponding 
sign variations indicate possible homometries or pseudo- 
homometries. For D's of higher rank, see Pilz & Fischer 
(1997). In many cases, a pseudohomometric solution can 
be excluded by introducing into the sign determination 
one or more higher harmonics gh with h > rn + 1, 
which eliminates the sign ambiguity for one of the 
lower harmonics (as is to be expected from standard 
structure solution practice employing high-order data). 
Therefore, this algebra is well suited for solving even 
some pseudosymmetric structures. As one may judge 
from the polynomials R obtained with assumed random 
errors introduced into the gh data, the method also seems 
to be fairly robust against considerable experimental 
errors, which are inevitably caused by the separation 
procedure of IVl into IFal, IF.I and s r (see e.g. Fig. 1). 

R(x) 

0.05 1 d~, 

o .oo  ~ ,  , ~ ~ , ~ 1  

- -  O. 0~,~ I I 1 1 1 1 1 1  I I I I I I I I I I  I | 1 1 1  I I I I 1 1 1 1 1 1 1 1 1  I I I I I 1 1 1 1 1 1 1  I |  

0.0 0.1 0.2 0.3 0.4- 0.5 

X 
Fig. 1. Po lynomia l  R plot ted versus x for a one -d imens iona l  structure 

with coord ina tes  xl -" 0.075, x2 - -  0.155, x3 = 0.235, x4 = 0.315,  
x5 = 0.325 [error bars  show standard errors  o f  coord ina tes  caused  
by a s sumed  errors  a(gh) = 0.1gh]. 
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To sum up: the one-dimensional recursive algebraic 
technique is based on a series of structure amplitudes 2g h 
from 2m identical points (with unit weight), projected 
parallel to b and c onto the x axis. The g's  are trans- 
formed into a function R(x) representing the xj locations 
as roots. The correct sign variation is found by varying 
s h for all h > 1 and using determinants D as criterion 
for the correct result. Individual (standard) errors for the 
coordinates, found by Monte Carlo computations, are 
small. Having processed also the IF.(0k0)l and IF,(00/)l, 
all x, y and z coordinates of the a-atom partial structure 
are known, not, however, in which combination they are 
arranged. 

5. Three-dimensional point 
tomography of the partial structure 

Attaching each Yi coordinate (i = 1 , . . . ,  m) to one xj 
o r  -xj ( j  -- 1 . . . . .  m) is performed via a rather naive 
approach that works only if sufficient spatial resolution is 
obtained in the one-dimensional projections: We employ 
a 'diagonal' in the reciprocal (hk0) plane, e.g. the hhO 
reflections. Their [F~[ are treated with the same algebra. 
The only difference is in the determination of all m + 1 
signs, because the origin has been fixed already. (If, 
in some cases, no unique xj, Yi combination can be 
obtained, another diagonal, say h,2h,O or 2h, h,O can be 
used, additionally to or instead of hhO.) In complete 
analogy, a diagonal with an l component (e.g. hOh or 
Okk) serves for assigning correct z k or - z  k (k = 1 . . . .  , m) 
to the pairs of x, y coordinates established before. The 
three-dimensional partial structure of an anomalous scat- 
terer (or any single atomic species separated otherwise) 
can thus be determined using (at least) five central 
reciprocal-lattice rows, each with m + 1 'harmonic'  
reflections (starting with the first order). Since only 
2 m variations of signs per row (or 2 m+l for the two 
diagonals) are necessary, their number is by far less than 
that in the 'brute-force' technique mentioned above. 

We like to use the term 'point tomography' for 
combining the x. with the Yi and finally the z k (j,  i, k -- J 
1 . . . . .  2m) because our approach is a reduced analogue to 
the tomographic method widely applied in medicine, ma- 
terial science and other non-destructive investigations: 
a three-dimensional density function is determined or 
approximated (representing e.g. X-ray absorption) by 
numerically evaluating one- or two-dimensional projec- 
tions. In our case, we deal only with an arrangement 
of m (or 2m) identical points in half (or full) cell 
volume. Provided no ambiguity is caused by two (or 
more) points accidentally coinciding in one of the three 
main projections or in particular in one of the diagonals, 
two of the latter suffice for correct assignment of each j 
to one of the i 's and k's. [In some space groups and 
also due to special positions occupied, the selection 
of diagonals has to be carefully considered because a 
diagonal working well in P1 is not necessarily suitable 

for all space groups. See the 'example'  below, where a 
space diagonal (hhh reflections) was used.] 

By a combination of the algebraic and the tomography 
techniques, all possible solutions are detected. Also, 
errors of individual atomic coordinates may be assessed 
by Monte Carlo computations [details are found in Pilz 
& Fischer (1997)]. Of course, each of the solutions found 
can also be refined, for example, on the basis of IF.(h)l 
by least squares. This may not only result in improved 
coordinates, scale and displacement factors but may also 
exclude one or more 'false' solutions. It is particularly 
suited if more (higher) harmonic reflections are available 
than required by the algebra. The partial structure may 
thus be considered either as uniquely defined (within 
estimated individual coordinate uncertainties) or all pos- 
sible pseudohomometric solutions (based on the rather 
limited experimental data) are found, also with error 
regions. (In this case, employing additional data can only 
decrease both number of solutions and error limits.) 

6. Two anomalous scatterers, origin 
adjustment of partial structures 

Consider a centrosymmetric structure containing two 
different kinds of atoms a I and a 2 whose absorption 
edges are accessible plus an arbitrary number of normal 
scatterers n. Let us consider all structure factors F to be 
reduced to f '  = f "  = 0 for both a atoms: 

F ° =  + + F , .  

[F~II l a n d  IF~l are assumed to be separated by select- 
ing appropriate X-ray energies for the measurements. 
The two partial structures of a~ and a 2 are obtained 
independently by the method described above. 

In space group P1, adjusting both partial structures to 
the same cell origin means selecting 1 of 8 possibilities: 
For e.g. the h00 reflections, the origin for the x param- 
eters of the a t and a 2 atoms may or may not differ by 
1/2. As a result of the algebraic technique, the signs 
s~l of all I~(h00)l are known and, by virtue of the 
relative signs Sr~ (obtained from the first separation pro- 
cedure after Karle), also the signs of the corresponding 
IFl~.l = IF~ + F,nl and of IF['l" 

so, I + so,st, IF,' 2 + F , , , I -  F['. 

This permits F~,~ to be obtained from the first separation 
a s  

by introducing the modulus and sign of F ~  obtained 
from the tomography of the a 2 atoms. In direct analogy, 
from the second separation of IF°l, [F°2l and Sr2lFCa~l 'F 
F2,,I are known, leading to 
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and thus to 

F2, , : F~ ~ - Ft,~ - s,,, IF~ ), I. 

Both independently obtained F~,, and F2n must be identi- 
cal for h even within experimental errors. For odd orders, 
F~,, - F2, , only if both partial structures refer to the same 
origin in x, which may be adjusted by adding 1/2. As a 
by-product, amplitudes and signs FI,  - F2, = F, ,  are 
known for h00 reflections. The same process, applied to 
the 0k0 and 001 data, adjusts the origin of the a 2 structure 
to that of a~ in all three dimensions. Finally, a set of s,n 
(or s,~) of the 'diagonal' data is corrected if necessary. 

7. Jagodzinski's idea on unique structure 
determination and its Patterson aspect 

Jagodzinski (1971 ) published a theoretical paper demon- 
strating that, for any crystal structure with two (chemi- 
cally different) anomalous scatterers a~ and a 2, a unique 
structure solution can be obtained by means of diffrac- 
tion intensities taken at six wavelengths. The wave- 
lengths (three around the absorption edge of each a 
atom) should be selected such that sufficient intensity 
contrast due to f '  and f "  is obtained. All measurements 
must be properly scaled. Knof (1989) reformulated this 
idea by casting it into a system of linear equations. 
Since, however, at present only a small amount of 
knowledge exists on how well they are conditioned 
for practical solution, in particular in the presence of 
experimental errors, this approach did not foster much 
further development. Prandl (1990) devised a principle 
for solving non-centrosymmetric structures based on two 
anomalous scatterers. 

Let us consider a centrosymmetric structure having 
a~, a 2 plus n atoms analogous to the last section. 
We assume the partial structures of both anomalous 
scatterers to be solved and origin aligned as before. 
Then, owing to the last paragraph in the tomography 
section, the two partial structures a~ and a 2 have been 
tested for pseudohomometry. Provided no such problem 
is found for the n atoms as well, the structure model 
obtained can be considered unique within the limits of 
error obtained for each partial structure. Following the 
result of the last section, partial structure factors F,, 
are then known by modulus and sign after the origin 
alignment. This applies directly to any hkl whose IFI 
has been subjected to the separation of IF~l  and IF,2 I. 
In principle, all measured IF(hkl)l can be separated 
into F, l ,  F 2 (computed from e.g. refined respective 
partial structures) rendering F,,,,. Therefore, the n-atom 
arrangement can also be assumed to be determined 
without ambiguity, save the errors propagated into the 
F,,,(hkl) by the separation calculations. 

From a Patterson point of view, Jagodzinski's idea 
can be described best by using the vector set matrix 
(Buerger, 1959) with elements wijuij, each representing 

a vector u 6 between two atoms at locations r i and 
rj and weights proportional to the products of their 
respective (forward-) scattering factors. The matrix (Fig. 
2) is divided into sections by separating the 2rnj atoms 
of type a 1 from the 2m 2 atoms of type a 2 and the  2m,, 
atoms of normal scatterers n. For P1, each half Patterson 
P(u) consists of six sections (apart from the trivial peak 
at u = 0), four of which can be calculated after solution 
of a~ and a 2 partial structures: vector sets a 1 ¢:~ d 1, 

l a 2 ¢¢, a 2 and a I ¢:~ a 2, plus vectors n ¢e~ n' from (doubly 
determined) [Fn, J 2. Subtracting these components from 
P(u) leaves 

P(u)  - P ( a , , d l )  - P ( a 2 , a 2 )  - P ' ( a , , a 2 )  - P ( n , n ' )  

= U ( a j , n )  + P'(a2,  n ), 

denoting by P' corresponding vector sets that are not 
partial Patterson functions in the true sense. The right 
side of this equation (positive definite in the whole cell 
volume) can be deconvoluted using as search model 
all r,~ l and r ,  2 positions [properly weighted in analogy 
with Fischer (1981, 1987)]. The result is the r ,  set. If 
all r ,  are uniquely obtained, the whole structure has 
been determined without ambiguity. (The solution of 
the n-atom structure can, of course, be achieved by any 
suitable method.) 

In principle, one of the six A's mentioned by 
Jagodzinski can be omitted if a rather short wavelength 
A 0 is used, for which none of the atoms exhibits 
significant f '  and f " .  In a centrosymmetric case, 
contrast merely due to f '  of a I and a 2 is sufficient. 
(For non-centrosymmetric structures, the contribution 
of f "  to the Bijvoet differences is also required.) In 
planning an actual experiment, the wavelength selection 
deserves consideration with respect to possible cross- 
over influence on IFI 2 of, say, changes " ' m fa l  associated 
with non-zero differences of f'a2 or f'~,'2" 

a I a 2 n 

' ~ 1  - a l  a 1 - a 2 

_ , 

i i i i i i i  / / / / / / / 

a 1 - n 

a 2 n 

, , , \  

F i g .  2. P a t t e r s o n  m a t r i x  f o r  a s t r u c t u r e  w i t h  t w o  d i f f e r e n t  a n o m a l o u s  

s c a t t e r e r s  a i ,  a2  a n d  n o r m a l  s c a t t e r e r s  n .  
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Table 1. Atomic positions o f  Cu~SbSe3 

First line of each atomic site: Parameters from Pfitzner (1995) with 
estimated standard uncertainties in parentheses. 
Second line: Coordinates obtained by the recursive algebraic method 
with theoretical partial g (no errors assumed). Numbers of reflections 
used for determining signs and parameters respectively in parentheses 
(s/x). 
Third line: As above, with errors assumed to be: gl 3%, gz 5%, g3 7%, 
g4 10% for Se and Sb atoms and 6, 8, 10, 12% for Cu. In parentheses: 
coordinate errors estimated from Monte Carlo computations. 
Fourth line: As above with experimental data from Table 2 (B values 
assumed as listed). 
Fifth line: Coordinates after anisotropic joint refinement of 52 param- 
eters against all eight (full) data sets measured at eight wavelengths 
(total of 1540 reflections). 

x y Z B (/~2) 

Cu(l) 0.0913 (2) 0.0427 (2) 0.2446 (4) 3.0 
0.0913 (4/3) 0.0427 (4/3) 0.2446 (4/3) 
0.090 (2) 0.038 (9) 0.234 (20) 
0.092 -* 0.25 3.0 
0.0905 (2) 0.0424 (1) 0.2435 (2) 2.52 

Cu(2) 0.1912 (4) 1/4 0.4309 (4) 3.0 
0.1912 (4/3) 1/4 0.4309 (4/3) 
0.186 (5) 1/4 0.431 (5) 
0.212 -* 0.415 3.0 
0.1905 (2) 1/4 0.4305 (2) 2.76 

Sb 0.2511 (2) 1/4 0.8885 (2) 1.61 
0.2511 (2/1) 1/4 0.8885 (2/I )  
0.245 (8) 1/4 0.888 (7) 
0.242 (12) 1/4 0.905 (17) 1.5 
0.2516 (I) 1/4 0.8886 (1) 1.00 

Se (1) 0.0060 (2) 1/4 0.1357 (3) 1.66 
0.0060 (4/3) 1/4 0.1357 (4/3) 
0.002 (4) 1/4 0.137 (8) 
0.003 (8) 1/4 0.128 (16) 1.5 
0.0063 (2) 1/4 0.1360 (2) 1.10 

Se (2) 0.1611 (2) 0.0658 (1) 0.6553 (2) 1.5 
0.1611 (4/3) 0.0658 (4/3) 0.6553 (4/3) 
0.162 (5) 0.066 (5) 0.655 (17) 
0.155 (10) 0.052 (19) 0.662 (24) 1.5 
0.1615 (1) 0.0661 (1) 0.6553 (1) 0.95 

* Not determined. 

8. Example and discussion 

We used the compound Cu3SbSe 3 as a test object for 
the method outlined above. Its crystal structure has 
been determined recently by Pfitzner (1995) (Pnma, 
Z = 4, a = 7.9984, b = 10.6232, c = 6.8416/~,, Table 
1). It exhibits elements of pseudosymmetry and (one- 
dimensional) pseudohomometry. 

We separated the Se (as a I atoms) and Sb (as a 2) by 
measuring with X-ray energies close to the respective 
K edges (Table 2). A multiple-wavelength 'joint' refine- 
ment (Spilker, 1983) of 52 parameters (12 coordinates, 
24 anisotropic vibration parameters, 8 scale and isotropic 
extinction coefficients for the 8 data subsets) against 
1540 independent IFob.,I 2 resulted in R = 0.042, R w = 
0.078 and a goodness of fit GOF - 2.92. (For 8 
refinements at individual wavelengths with 38 param- 
eters versus 181-192 reflections, we obtained R = 

Table 2. X-ray energies and lattice rows used for deter- 
mining the partial structures of Se and Sb atoms 

Se Sb 
E (keY) f l  E (keY) f '  

12.55 -4 .347 29.20 --2.892 
12.58 --4.677 30.25 -4 .372 
12.60 -4.982 30.45 --6.014 
12.62 - 5.420 
12.64 --6.207 

Main rows (class 1) 

2h~OtO 012kt0 OtO~21 2h,0~0 O~2k~O 0t0/2l 
1 . . . . .  5 1 . . . . .  3 1 . . . . .  5 1 . . . . .  4 1 . . . . .  4 1 . . . . .  4 

Diagonals (class 2) 

hOh Okk hhh hi 012h Okk hhh 
1 . . . . .  5 1 . . . . .  5 1 . . . . .  3 1 . . . . .  3 1 . . . . .  4 1 . . . . .  3 

0.027-0.033, R w -- 0.041-0.051, GOF -- 1.07-1.70.) We 
used the scale factors from the refinement [which is a 
'weak point' and deserves attention as treated in Pilz & 
Fischer (1997)]. We estimated B (overall) to be 1.5/~2. 

From theoretical g(hkl) without errors, computed from 
parameters of the structure determination by Pfitzner 
(1995), we determined the two partial structures for Se 
and Sb (line 2 in Table 1) with the method described 
above, and also from g(hkl) with assumed errors (line 
3). The differences between our experimental g's and the 
theoretical ones turned out to be larger than those used in 
the Se test computations: For 26 gse.obs (22 gsb,ob0 from 
6 central reciprocal-lattice rows each, compared with 
the respective 'theoretical' g's, we obtained R factors 
of 0.37 (0.38). We solved the Sb partial structure with 
the algebraic method and succeeded in obtaining the Se 
coordinates from six reciprocal-lattice rows (see Table 
2) by employing 26 g's and omitting some measured 
harmonics higher than those listed in Table 2. Therefore, 
the results obtained for the Se and Sb positions from their 
respective gob~ (line 4 in Table 1) exhibit considerably 
larger Monte Carlo error regions (compared with line 
3). Nevertheless, both partial structures appear rather 
well defined considering the restricted number of data 
used (see Table 2) and comparing it with an (unrefined) 
trial structure model to be obtained from a Patterson or 
E map. From the amount of experimental errors in the 
gob~ produced by the separation procedure, the algebraic 
method appears to be fairly robust although it deserves 
careful and critical handling. 

For two reciprocal-lattice rows, gsc(2ht0,0) and 
gsb(Okk), unambiguous results were obtained only 
after origin alignment between both partial structures. 
Fig. 3 shows the corresponding polynomials for 
the correct solution (a) after origin alignment, and 
the biased alternative (b), from both theoretical and 
experimental gse(2h~0~0). Numerous similar one- 
dimensional pseudohomometries as well as elements 
of pseudosymmetry were detected. [For instance, the 
difference in z of Se(1) and Se(2) being close to 1/2 



KARL F. FISCHER AND KATRIN PILZ 481 

causes Se-Se non-Harker vectors to show up in a Harker 
plane for all atoms. This explains perhaps the high 
standard errors of the z values in line 4 (Table 1).] All 
pseudohomometries could be resolved without doubt, 
except one coordinate shift of Sb along x, which came 
out smaller than 1/4 (instead of larger), however still 
within its standard deviation from the value of line 5 
(Table 1), whose numbers we considered as being 'true' 
compared with those found by the algebra. The signs of 
some partial structure factors for the Cu atoms were also 
found. A closer look at the parameters of line 4 reveals: 

(i) None of them differs (denoted by A) from the 
corresponding 'true' one by more than one standard 
deviation. Averaged over the seven independent Sb, 
Se parameters, A/cr equals 0.54 (with a maximum of 
0.965). The Monte Carlo calculation of or apparently 
produces valid results. 

R(x )  

1 . oo  

0.50 I 

0 .00  - ~ "-= ~ ' 

--0.50 

-1.oo , . . . . . .  , , i , , , , ,  . . . .  i , , , , ,  . . . .  i . . . .  , . . . .  i . . . .  , , , , ,  
0 . 0  0 . 1  0 .2  0 .3  0 .4  0 .5  

2x 

(a) 
R(x) 

I .oo 

0.50 J ~--~-- / ~ / / ~  ~ 

0 . 0 0  

--0.50 " 1 

--I . oo  0.0 0.1 0.2 0..5 0.4 0.5 
2X 

(b) 

Fig. 3. (a) R(2x) for the correct sign variation [s(200) = + l, s(400) = 
- I ,  s(600) = +1 ,  s(800) = +1]  of the gse(h00) (solid curve: 
theoretical; dashed curve: experimental). (b) R(2x) for the biased 
alternative sign variation [s(200) = +1 ,  s(400) = +1 ,  s(600) = 
- 1, s(800) : - 1 ] of the gse(h00) (solid curve: theoretical; dashed 
curve: experimental). 

(ii) The average of ,4, multiplied by the respective 
lattice constants, is 0 . 0 7 4 / ~  (maximum 0.15/~). 

(iii) The three-dimensional deviation from the 'true' 
position is found to be 0.13/~ for Sb, and 0.06 and 
0.165/~ for Se, respectively. 

We consider this result as rather promising, although 
the example is a very small structure. More details on 
the structure of C u 3 S b S e  3 and its determination will be 
published in a forthcoming joint paper with Pfitzner. 

9. Conclusions 

For the method described above, we shall briefly summa- 
rize first its physical and mathematical basis. We assume 
that, for each central reciprocal-lattice line selected, 
the partial structure amplitudes IF,(h)l for h - 1 . . . .  , 
m + 1 can be obtained and reduced to their respective 
geometrical part gh" For centrosymmetric structures, the 
corresponding measurements are done at A > A,,. 

In practice, the inherent problems are: 
(i) Scale S and (overall) displacement factor B must 

be known, at least approximately. This can be achieved 
by applying Wilson's statistics to an approximately 
complete reflection data set. (Note that a few harmonics 
from five lattice rows including low-order data are 
insufficient.) If no other information is available, the 
maximum admissible value for the g's may be used: 
g <_ m. Thus, if gmax (perhaps augmented by an experi- 
mental error due to the separation process) is set equal 
to m, one (or perhaps more) solution(s) obtained from 
all five rows in a first run of the algebra program can 
then be least-squares refined using as parameters S, B 
and the coordinates. Thus, a better approximation for S 
and B can lead to a subsequent algebra run. In general, 
only one (of perhaps few initial) solution(s) will survive 
this iterative procedure. 

(ii) Even with present-day quality of scattering in- 
tensities obtained from synchrotron radiation (Kirfel & 
Eichhom, 1990), the precision of IF,~I and IF,,I obtained 
by the separation process is necessarily less than that of 
the original data and depends mainly on the relative dis- 
persive contrast IF 1 [2 _ 1F212/½(IF 112 + 1F212) between 
measurements at two X-ray energies. Afa is the only 
parameter that can be changed experimentally: For atoms 
with high order number Z, high contrast can be achieved 
in using L and perhaps M edges (Hendrickson, 1995). 
Moreover, using the absolute experimental contrast im- 
plies a relative scaling of both measurements with much 
better accuracy than needed for S. The method of Karle 
(1980), appropriate for scaling MAD data, is again based 
on Wilson's statistics, and may therefore be unreliable 
for a few data only. A possible remedy exists in energy- 
dispersive measurements but this still requires work on 
details (see e.g. Fischer, Krane & Morgenroth, 1996). 
(Other systematic errors, e.g. from extinction, are not 
considered here.) 
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gh represents the structure-factor modulus of a cen- 
trosymmetric point structure, all points with unit weight, 
and the number of points (2m) being known. Conse- 
quently, the method may not work for a partial structure 
of atoms randomly distributed over an unknown number 
of sites. On the other hand, unusually small distances 
between atoms, be it in three-dimensional space or in 
the projections, do not preclude a solution. (Chemically 
reasonable distances should, of course, be used in dis- 
criminating against a false pseudohomometric solution.) 
It should be mentioned that, while ordered distribution 
of the a atoms is necessary, this is not a prerequisite for 
the n atoms: only their F,,'s need to be known, not the 
number of n-atom positions occupied. 

In mathematical terms, the algebra contains relations 
between harmonic gh that can all be derived from the 
'addition formulae' for cosine of multiple arguments 
such as 

cos(2x) = 2 cos 2 x - 1 

cos(3x) -- 4 cos 3 x - 3 cos x 

etc. No statistical or probability arguments are used 
and all equations are derived without approximation. 
They are related to ideas of Ott (1928), Banerjee (1933) 
and Avrami (1939), which could not be carried through 
to much practical use. Our representation of the point 
distribution (projected in one dimension) by m roots of 
the polynomial R[cos(27rx)] [or transformed in R(x)] can 
produce single solutions, degenerate ones or (by virtual 
small 'movements' of the azimuthal axis in a vertical 
direction, caused by errors in the gt,) double roots or 
doubly complex ones. This can be easily recognized and 
critically analysed by plotting R(x). (Again, knowledge 
of the number m of atoms looked for is a necessary 
condition.) 

The point tomography is executed best using three 
orthogonal projections (or nearly so) and 'diagonals' 
having about the same angles with the two main lattice 
lines whose parameters are to be attached to the atoms 
looked for. In space groups with systematic extinc- 
tions, the selection of diagonals (and sometimes of main 
projections, at least regarding the sequence of their 
treatment) deserves careful consideration. 

The method is expected to work also for structures 
containing one type of a atom only (in this case F,, 
is identical with Fn,,): Having determined the partial 
structure of the resonant atoms, the signs of all those 
IF,,(h)l can be found whose corresponding IFo(h)l is 
sufficiently large, sr(h ) thus being applicable with safety. 
[Evidently, the probability to obtain a reliably defined 
sign of IF.I (or IF..I) is higher for a structure having 
a l and a 2 compared with a structure with only one 
anomalous scatterer.] 

Care has to be taken if an a-atom arrangement rep- 
resents a substructure, with special positions leading to 
'extinction rules' in addition to the general ones of the 

space group (for their partial structure factors only). For 
the class of reflections concerned, sign determination of 
the IF~I is impossible (as it would be with any other 
'heavy atom' or similar technique). 

The degree of uniqueness obtainable depends, of 
course, mainly on the quality of the data, judged against 
the amount of pseudohomometry or pseudosymmetry 
in the structure itself. While the latter cannot be pa- 
rametrized, Bragg reflection intensities can nowadays 
be measured with synchrotron radiation to a precision 
that compares well (for medium and strong reflections) 
with that of the best X-ray tube data and that is superior 
for weak intensities (Kirfel & Eichhorn, 1990; Eichhorn, 
Kirfel, Grochowski & Serda, 1991). Therefore, the main 
errors introduced originate from the separation procedure 
and the scaling, all being partly systematic (see above). 

We do not try to advocate this method for general use: 
It may be helpful in starting a structure determination 
safely by providing unambiguous partial structures (or if 
not by presenting all possible solutions for further con- 
sideration): no pseudohomometric case is left undetected 
by the crystallographer. Consequently, our technique 
might also be useful for structures that resisted a first 
incontestable solution by conventional methods. (In this 
case, the IFl's are already on a nearly absolute scale.) 

The sequence o f  steps suggested in the Abstract is 
(for space group P1): 

(i) Select three independent (central) reciprocal-lattice 
rows ('class 1'), plus two (or more) linear combinations 
of them ('diagonals, class 2') such that non-zero indices 
from all rows of class 1 are used at least once. 

(ii) Measure intensities of (at least) the first m + 1 
reflection orders for each row at three (or more) wave- 
lengths A > A,~. Obtain IFol, IF.I and s r for all reflections 
on an approximately absolute scale. 

(iii) For each row (and each kind of a atom), reduce 
[F~(h)[ to g~,h and apply the 'recursive algebraic tech- 
nique'. (Choose a sign for h -- 1 only at 'class 1' rows.) 
Calculate individual coordinate error regions by Monte 
Carlo techniques. 

(iv) Recover the three-dimensional partial a structure 
by using point tomography. 

(v) Find signs of Fnn (via origin alignment in the 
case of two kinds of a atoms) and determine the partial 
structure of n atoms by any suitable method. 

If in steps (iii) to (v) no pseudohomometric case 
remains unsolved (and no homometry is encountered), 
the structure has been determined uniquely within the 
error limits. 

Steps (iii) plus (iv) constitute a new technique for par- 
tial structure analysis without Fourier methods requiring 
few selected data only. It has almost ab initio character 
and offers high spatial resolution. 

At present, our algebra program is not yet ready to 
allow 'black box' (routine) use for all centrosymmetric 
space groups. We experienced, however, no fundamen- 
tal problems in working with space group Pnma. For 
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the case of special positions (e.g. x -- O, x - 1/2 
in a one-dimensional projection), a slightly modified 
version exists. We hope to have the program ready for 
distribution to interested colleagues in a short time. 
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